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1. Introduction: bottom-up string phenomenology

String theory has presented itself with the formidable task of taming the quantum realm of

gravity, while simultaneously furnishing a predictive and testable theory of particle physics.

In attempting to meet this dual challenge, string phenomenology traditionally adopts a

“top-down” point of view, which aims to construct realistic compactification scenarios

starting from the full 10-dimensional closed string theory [1, 2], possible augmented with

one or more D-branes [3]. The thrust of this approach is that, by simultaneously controlling

and scanning both the string scale geometry and the low energy field theory, one can isolate

realistic backgrounds that meet all consistency requirements at both ends. Recent progress

in mapping out the “closed string theory landscape,” the vast collection of potentially

stabilized string vacua [4], has strengthened the belief that such consistent backgrounds

indeed exist, possibly even in abundance [5]. Finding a single one of them, however, still

seems far too challenging a task at present.
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In a complementary development, fueled by the deepened understanding of string

dualities and D-brane physics, open string theory has evolved into a remarkably successful

tool for building 4-d supersymmetric field theories. In particular, it is now realized that by

taking a judicious low energy limit of the world-volume theory on N D3-branes, one recovers

a purely 3+1-dimensional gauge theory, decoupled from gravity and higher dimensional

dynamics [6]. In this decoupling limit, the closed string background gets frozen into a set

of non-dynamical, and thus largely tunable, gauge invariant couplings. By placing one or

more D-branes near various types of geometric singularities, realizations of large classes of

gauge theories have been uncovered [7 – 14]. Evidently, open string theory has become the

preferred duality frame for representing weakly coupled, as well as strongly coupled, 4-d

quantum field theories.

Given this rich “open string theory landscape,” it is a well-motivated question whether,

with currently available technology, one can find an explicit realization of the supersym-

metric Standard Model as the world-volume theory on one or more D3-branes. Since every

decoupled theory, via its space of tunable couplings, stretches out over a sizable open neigh-

borhood within the space of 4-d field theories, one can even aim to reproduce the spectrum

and couplings within phenomenological bounds. Though clearly a non-trivial challenge,

this question is still far less ambitious, and thus easier to answer, than finding a fully real-

istic closed string compactification. But it would be a useful first step: only after one knows

how to represent the observed particle spectrum as an open string theory near a suitable

singularity, one can start to look for compact geometries that contain this singularity. We

thus view the bottom-up approach to string phenomenology [15 – 23] as a promising route

towards unlocking some of the mysteries of the closed string theory landscape.

The experimental fact that guides the bottom-up perspective is the exponential sepa-

ration between the TeV scale of particle physics and the Planck scale of quantum gravity.

Warped compactifications assumption that all low energy physics takes place in a highly

red-shifted region of the internal geometry. This geometric viewpoint thus naturally places

the Standard Model on a world-brane near the apex of a warped throat.

A key manifestation of the gauge hierarchy is that, at the TeV scale, one can make a

clean separation between dynamical gauge and matter fields and non-dynamical coupling

constants — even though both start out as equally dynamical degrees of freedom in the

full high energy string theory. It is thus accurate, and even appropriate, to isolate the low

energy worldbrane physics from the closed string dynamics, by taking a decoupling limit

in which the Planck scale is sent off to infinity. In geometric terms, this limit replaces the

finite warped throat region by an infinite, non-compact Calabi-Yau singularity.

Due to the interaction with the ambient geometry, a D3-brane on a CY singularity

breaks up into various fractional branes. As a result, its world-volume theory takes the non-

trivial form of a quiver gauge theory: it has one U(ni) gauge multiplet for each constituent

fractional brane and bifundamental chiral matter associated with each brane intersection [7,

11, 25 – 38]. In the decoupling limit, the gauge invariant coupling constants of this quiver

gauge theory are determined by non-dynamical asymptotic boundary conditions on the

closed string fields, and can thus be viewed as continuously tunable parameters.

This paper is our first progress report on our search for a D3-brane realization of
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Figure 1: Our bottom-up approach to string phenomenology assumes that the Standard Model is

localized on a D3-brane at the apex of a highly warped throat. The D3-brane theory is accurately

described via a decoupling limit, in which the Planck scale is sent off to infinity, leaving behind a

non-compact Calabi-Yau singularity.

the Standard Model. Our strategy is as follows. We start by setting up the rules that

define quiver gauge theories, and introduce a corresponding minimal quiver extension of

the MSSM, which we call the MQSSM. Our target is to find its geometric dual. Since

it is hard to immediately guess the right geometry, we first identify a class of Calabi-

Yau singularities, such that the probe D3-brane theory is just large enough to contain

the MSSM, and has a rich enough space of couplings and vacua to allow the necessary

tuning. We then look for a suitable symmetry breaking process towards the MQSSM

quiver theory. After translating into the dual geometric language, the symmetry breaking

amounts to into a specific partial resolution of the CY singularity, which then provides the

sought after geometric dual. To go further one must turn on various soft supersymmetry

breaking terms. Apart from some general comments, we leave this problem for the future.

The specific class of geometries we will consider are the del Pezzo 8 singularities. By

following the outlined procedure, we identify a specific partial resolution of the del Pezzo

8 geometry for which the D3-brane gauge theory has the Standard Model gauge group,

SU(3)C × SU(2)L × U(1)Y , and matter content, three families of quarks and leptons with

all the right charges, plus a somewhat extended Higgs sector. All matter fields appear

with the proper chiralities and all have classically tunable Yukawa couplings. The quiver

diagram of the model is given in figure 8. In the final section, we discuss some physical

aspects of the MQSSM and address some possible criticisms of our approach.

2. A quiver extension of the MSSM

It will be useful to introduce a minimal quiver gauge theory extension of the supersym-

metric Standard Model. The motivation for presenting it is two-fold: (i) it will help with

recognizing, among the vast collection of possibilities, those open string theory construc-

tions that may contain the MSSM as a special limit, and (ii) it will give a useful preview

of typical extra features that arise in generic open string set-ups, and that need to be dealt
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Figure 2: The MQSSM is the minimal quiver extension of the Standard Model, as obtained via

the rules (a)-(e).

with in making a fully realistic model. For both reasons, let us adopt the quiver diagram-

matic rules that apply to D3-branes on CY singularities. These are (see next section):

(a) Each node of the quiver represents a gauge multiplet with U(k) gauge symmetry.

(b) Each oriented line between two nodes represents a bi-fundamental chiral multiplet.

(c) There is an equal number incoming and outgoing lines connected to every node.

As we will see, these characteristics all have a direct geometric origin. Rule (c) in

particular ensures the absence of non-Abelian gauge anomalies for the case of multiple

D3-brane probes. Two additional rules, that apply to an especially convenient class of

D3-brane configurations, known as “exceptional collections,” are:

(d) There are no lines that begin and end at the same node.

(e) There is only one type of oriented lines between any pair of nodes.

Rule (d) excludes the presence of adjoint matter multiplets. Rule (e) states that all

bifundamental matter multiplets are purely chiral.

The minimal quiver extension of the MSSM, drawn by using the five rules (a) through

(e), is given in figure 2. It depicts all the gauge charges of the fields, while each closed

triangle of the diagram represents a possible Yukawa coupling. We see that relative to the

MSSM, there are several extra U(1) factors, and a number of extra Higgs doublets: two

pairs for each generation. The additional Higgses are forced on us by rule (c) and the

requirement of having all the expected supersymmetric Yukawa couplings

Let us briefly discuss the U(1) factors. We call the node on the right U(1)0 and

the two nodes at the bottom U(1)u and U(1)d. The five U(1) generators are denoted by

{Y0, Y
u
1 , Y d

1 , Y2, Y3}. The charges of the matter fields are given in the table below.

– 4 –
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We note that the total sum Qtot =
∑

i Yi automatically decouples: none of the fields is

charged under Qtot. Of the remaining four generators, some are anomalous. The anomalies

cancel for the combinations

B − L =
1

3
Y3 − Y0 Y =

1

2
(Y d

1 − Y u
1 − Y0) +

1

6
Y3 (2.1)

Obviously, only U(1)Y represents an actual local symmetry in the MSSM. The U(1)B−L

symmetry has the desirable consequence that it helps suppress the rate of proton decay,

but obviously, it needs to be spontaneously broken at an energy scale of order of a TeV or

larger. A natural symmetry breaking mechanism would be to assume a non-zero vacuum

expectation value for the bosonic superpartners of the right-handed neutrino fields, which

would also mesh well with the small neutrino Yukawa couplings.

The remaining two U(1)’s indeed have
Y0 Y d

1 Y u
1 Y2 Y3 Y

Q 0 0 0 -1 1 1
6

u 0 0 1 0 -1 −2
3

d 0 1 0 0 -1 1
3

L 1 0 0 -1 0 −1
2

ν - 1 0 1 0 0 0

e - 1 1 0 0 0 1

Hu 0 0 -1 1 0 1
2

Hd 0 -1 0 1 0 −1
2

Table 1: The U(1) charges

mixed anomalies. In string theory realizations

of quiver theories, these are canceled via a gen-

eralized Green-Schwarz mechanism. Moreover,

via the coupling to the RR-forms, the corre-

sponding gauge bosons typically acquire a mass

of order the string scale. We will give a brief

outline of this mechanism in the last section.

From the low energy perspective, these U(1)’s

thus survive as anomalous global symmetries,

that, among other things, forbid the presence

of µ-terms in the classical superpotential.1

In general, the presence of extra U(1) factors as well as extra Higgs fields is characteris-

tic of many string theoretic models. Both are acceptable extensions of the Standard Model,

provided the masses and couplings are tuned to satisfy the appropriate phenomenological

bounds. For now, however, we postpone the discussion of these issues: instead we set out

to find a Calabi-Yau singularity such that the world-volume theory of a probe D3-brane

reproduces the MQSSM, the quiver gauge theory of figure 2.

3. D3-brane on a del Pezzo 8 singularity

In this section we introduce the quiver gauge theory on the world volume of a D3-brane

on a del Pezzo 8 singularity. This quiver theory has been previously derived in [35] using

a geometric description, and in this section we begin by recalling some elements of that

construction.2 The geometric description is strictly only accurate for the holomorphic F-

term data of the quiver theory. It relies on the fact that the (complexified) Kähler moduli

only appear in the D-terms, so that we can extrapolate to large volume without affecting

the F-terms. In the large volume limit, topological data of the quiver gauge theory, such

1These will have to arise from some other source, such as the Giudice-Masiero mechanism [39].
2More details and additional work on D-branes at Calabi-Yau singularities can be found the original

literature [27 – 33, 37, 34 – 36, 38].
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as the gauge group, the number and representations of the matter multiplets, as well as

the holomorphic superpotential, can be accurately obtained via the geometrical methods

outlined below.

3.1 Geometry of del Pezzo 8

A del Pezzo surface is a manifold of complex dimension 2, with a positive first Chern class.

It is labelled by an integer n; the n-th del Pezzo surface Bn can be represented as either P2

blown up at n ≤ 8 generic points, or as P1 ×P1 blown up at n − 1 points. We choose the

first representation. Here blowing up a point means replacing it by a sphere. By placing

the canonical line bundle over Bn, one obtains a non-compact Calabi-Yau three-fold. In

the limit where the Del Pezzo surface shrinks to zero size, one obtains a singular three-fold.

We will call this the del Pezzo n singularity.

The second Betti number b2(Bn) is equal to n + 1. A basis of H2(Bn,Z) is given by

the hyperplane class H in P2 plus one generator Ei for each of the n blown up points. The

generators Ei are called exceptional curves. The intersection numbers are given by

H · H = 1, Ei · Ej = −δij , H · Ei = 0 . (3.1)

The canonical class of the del Pezzo surface is

K = −3H +

n
∑

i=1

Ei (3.2)

It has self intersection K · K = 9 − n. The first Chern class of Bn is c1(TBn) = −K. The

characteristic property of a del Pezzo surface is that c1 is ample, that is, it has positive

intersection with every effective curve on Bn. This in particular implies that K must have

positive self-intersection, which gives the restriction n ≤ 8.

In this paper, we will mostly consider the 8-th del Pezzo surface B8. It can be con-

structed as a hypersurface of degree six in the weighted projective space WP3
1,1,2,3 with

homogeneous coordinates (x, y, z, w), defined via an equation of the generic form

w2 = Az3 + By6 + Cx6 + . . . (3.3)

This defines a del Pezzo surface because the sum of the weights exceeds the degree of the

surface. The 2-d homology of B8 is generated by 8 exceptional curves Ei, corresponding

to the 8 blow up points, and the hyperplane class H. Via the intersection pairing (3.1),

H2(B8,Z) takes the form of an integral lattice in R9. It has the remarkable property that

the 8-dimensional degree zero sub-lattice, defined as those elements with zero intersection

with c1 = −K, is even and unimodular. In other words, it is isomorphic to the root lattice

of E8. The 8 simple roots, all with self-intersection -2, can be chosen as follows

αi = Ei − Ei+1, i = 1, . . . , 7 α8 = H − E1 − E2 − E3 (3.4)

Combined with K, they form a complete basis of H2(B8,Z), with intersection form

αa · αb = −Aab , K · αa = 0 (3.5)

– 6 –
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Figure 3: The 2-cycles αi are identified with nodes on the E8 Dynkin diagram.

with Aab the Cartan matrix of E8. The 2-cycles αi can thus be identified with nodes on

the E8 Dynkin diagram, as drawn below. This identification between 2-cycles and simple

roots gives rise to a natural action of the Weyl group of E8 on H2(B8,Z), in terms of global

diffeomorphisms on B8 that exchange the exceptional curves while preserving K. The Weyl

reflections in the simple roots αi with i ≤ 7 are simply diffeomorphisms that interchange

two of the blown up points, while keeping the rest of the surface fixed. The reflection in

α8 looks more complicated, but can be understood in a similar manner.

The ellipses in the homogeneous equation (3.3) represent additional terms that deform

the complex structure of the del Pezzo 8 surface. An elegant description of this space of

complex structure deformations has been given in [40]. It is built on the observation that

the homogeneous eqn (3.3) can chosen of the form

w2 = 4z3 − g2 zy4 − g3 y6 + P (x, y, z), (3.6)

where P (x, y, z) is a suitable homogeneous polynomial [40] that vanishes at x = 0. The

degree one surface x = 0 is an anti-canonical divisor, and defines an elliptic curve E ,

given by a Weierstrass equation in WP2
1,2,3. The space of continuous complex structure

deformations that keep E fixed is 8 dimensional.3 Natural coordinates on this space are

the parameters that specify the polynomial P (x, y, z).4

Later on, in our construction of a Standard Model-like gauge theory, we will consider

a special degenerate limit of the del Pezzo 8 geometry, in which some of the 2-cycles αi,

given in eqn (3.4), become effective curves on the del Pezzo surface. The del Pezzo surface

then develops a singularity of the appropriate A-D-E type. The maximally degenerate

surface of this type is obtained by setting P (x, y, z) = 0 in (3.6). The resulting surface is

an elliptic singularity of type E8. More generally, one can get an H-type singularity for

every subgroup H of E8.

3A direct way to interpret these 8 complex structure deformations is that they parameterize the locations

of 4 of the 8 points that are blown-up to produce B8 from P
2. The positions of the four other points do

not give rise to complex structure moduli, since they can be held fixed by using the PGL(3, C) group of

coordinate transformations of the underlying P
2.

4As it turns out [40], these describe homogeneous coordinates on the weighted projective space:

WP
8
1,2,2,3,3,4,4,5,6 . Remarkably, the set of weights of the projective space coincides with 1 plus the set

of Dynkin labels of the highest coroot of the E8 Kac-Moody algebra. As explained in [40], the above

embedding of E inside the del Pezzo 8 surface induces an E8-bundle over E . The construction can thus

be used to establish an isomorphism between the space of complex structure deformations of B8 and the

moduli space of E8 bundles over E .

– 7 –
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3.2 Quiver gauge theory of a D3-brane on del Pezzo 8

Let X denote a non-compact Calabi-Yau manifold given by a complex cone over a collapsing

del Pezzo 4-cycle B. The D3-brane configurations that we will consider are brane-worlds

that fill the 3+1 flat directions, and therefore are localized at a point in X . In the strongly

curved background at the tip of the cone, the D3-brane will typically split into several

so-called fractional branes that wrap vanishing cycles in X .

As far as the F-terms is concerned, we may blow up the vanishing cycles and perform

computations in the large volume limit. From a large volume perspective, the geometric

characterization of a fractional brane is as a sheaf Fi, which one can think of as a bundle

supported on the collapsing del Pezzo surface. The RR-charges of a sheaf Fi are combined

in the charge vector

ch(Fi) = (rk(Fi), c1(Fi), ch2(Fi)), (3.7)

which specifies the (D7,D5,D3) charge of Fi. The D7 charge is called the rank rk(Fi) of

the sheaf, while the D5 charge is equal to the first Chern class c1(Fi) and specifies a two-

cycle around which the D5-component of the fractional brane is wrapped. If we think of

a fractional brane Fi with non-zero rank as a 7-dimensional gauge theory on a D7-brane,

c1(Fi) indicates the presence of non-trivial magnetic flux supported on the corresponding

2-cycles, and ch2(Fi) represents a non-trivial instanton number.

In this language, the D3-brane itself is naturally represented as a sky-scraper sheaf Op

localized at a single point p. It splits up in a collection of fractional branes Fi, each with

integer multiplicities ni, such that the charge vectors of all fractional branes add up to that

of a single D3-brane
∑

i

ni ch(Fi) = ch(Op) = ( 0 , 0 , 1 ) (3.8)

To satisfy this condition, some of the charges have to be negative, since all charges as-

sociated with 4- and 2-cycles would have to add up to zero. If ni is negative, it doesn’t

necessarily mean that it counts anti-branes. In the limit when the del Pezzo surface col-

lapses, the central charge vectors will line up after taking the small volume limit, so that

all fractional branes preserve the same four supersymmetry charges.

Each type of fractional brane, with multiplicity ni, contributes a U(|ni|) factor to the

total gauge group of the world-volume theory. The corresponding N = 1 gauge multiplet

is furnished by the lightest modes of open strings with end-points on the same type of

fractional brane. The massless spectrum of open strings that stretch between two different

types of fractional branes Fi and Fj represent chiral multiplets that transform in the bi-

fundamental representation of the corresponding U(|ni|) × U(|nj|) gauge group. In case

the branes are space filling, i.e. have support on the whole Calabi-Yau, the massless modes

correspond to elements of the cohomology of the Dolbault operator acting on the space of bi-

fundamental valued anti-holomorphic forms, Ω(0,·)(F ∗
i , Fj). The number of bi-fundamental

fields is therefore counted by the proper generalization to sheaves of the cohomology group

H(0,·)(F ∗
i ⊗ Fj), known as the Ext groups Extk(Fi, Fj). Since our fractional branes are

not space-filling, we instead need to distinguish between a sheaf F , living on the del Pezzo

4-cycle B, and the associated push-forward i∗F on the Calabi-Yau X , which can be thought

– 8 –
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Figure 4: D7, D5 and D3-branes wrapped 4-, 2- and 0-cycles of the internal manifold.

of as F extended by zero on X . Taking this into account, one concludes5 that for each

generator of Extp
B(Fj , Fk), one has exactly one chiral field in four dimensions. This is all

we need to know for now.

On a given Calabi-Yau singularity, there are different possible choices of basis for

the fractional branes. The type of basis that is most well-understood are the so-called

“exceptional collections”. These satisfy the special criteria that

(i) Extm(Fi, Fi) = 0 for m > 0. This implies the absence of adjoint matter for a collapsing

del Pezzo.

(ii) there exist an ordering of the Fi’s, such that Extm(Fi, Fj) = 0 for all but one m if

j > i and for all m if i > j.

The second condition (ii) implies that the bi-fundamental multiplets between any two

given nodes has only one type of chirality.

Let us specialize to the case of the del Pezzo 8 singularity. The total homology of B8 is

11-dimensional; we thus expect to find 11 types of fractional branes. Mathematicians have

identified a natural choice of basis of coherent sheaves on del Pezzo singularities, known

as three-block exceptional collections. These divide up into three groups, with the special

5In short, the argument that leads to this conclusion is as follows. Let us denote the normal bundle of

the collapsing cycle by N . Then the spectrum of massless modes is counted by [41, 34]

Extr
X (i∗Fj , i∗Fk) =

X

p+q=r

Extp

B
(Fj , Fk ⊗ Λq

N). (3.9)

For a del Pezzo surface, the normal bundle is equal to the canonical line bundle, N = K. Given a generator

for Extp

B
(Fj , Fk), we can use Serre duality on B to get a generator in Ext2−p

B
(Fk, Fj ⊗K), hence we get two

Ext generators on the Calabi-Yau X . These two generators are in turn related by Serre duality on X , which

maps Extp

X
(i∗Fj , i∗Fk) isomorphically to Ext3−p

X
(i∗Fk, i∗Fj). There is a simple physical interpretation for

this doubling. The degree (mod 2) of the Ext group is related to 4-d chirality through the GSO projection.

Two generators related by Serre duality therefore have opposite chirality and opposite bifundamental charge,

and so they give rise to a particle and its corresponding antiparticle. Since by convention chiral superfields

contain a left-handed spinor, the dual pair of generators gives a single chiral superfield in four dimensions

– the second generator descends to the conjugate anti-chiral superfield.

– 9 –
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property that the intersection pairing between elements of the same block vanishes. The

associated quiver diagram thus always has a triangular structure. Exceptional three block

collections for the B8 singularity have been constructed in [42]. The one that is closest

to our needs is denoted as type (8.1) in [42]. Unfortunately the actual collection as given

in [42] turns out not to be exceptional — probably due to a trivial calculation error. Instead

we will pick collection (8.2) in [42] and apply Seiberg dualities (for a short description, see

subsection 3.5) until we end up with a quiver of type (8.1). The resulting charge vectors

of this collection are:

ch(Fi) = (1,H−Ei, 0) i =1, . ,4 ch(F11) =
(

6,−3K+2
8
∑

i=5
Ei,

1
2

)

ch(Fi) = (1,−K+Ei, 1 ) i =5, . ,8 (3.10)

ch(F9) = (1, 2H−
4

∑

i=1
Ei, 0) ch(F10) =

(

3,−K +
8
∑

i=5
Ei,−

1
2

)

We see that all fractional branes have non-zero D7 and D5-brane components. The

D5 branes are wrapped around the 2-cycles as indicated. From this collection, we wish to

obtain the quiver gauge theory associated with a single D3-brane. The condition (3.8) that

all charge vectors must add up to (0,0,1) yields the following multiplicities

ni = 1 , i = 1, . , 9 , n10 = 3 , n11 = −3 (3.11)

So the gauge theory on the D3-brane has gauge group U(3)2 × U(1)9.

To obtain the matter content we must determine the dimension of the relevant Ext

groups. Since for each pair of sheaves Fi and Fj of an exceptional collection, only one of the

Ext groups is non-zero, one can determine its dimension by computing the corresponding

Euler character

χ(Fi, Fj) =
∑

k

(−)kdim Ext(Fi, Fj) (3.12)

which can be computed using the Riemann-Roch formula

χ(Fi, Fj) =

∫

B

ch(F ∗
i ) ch(Fj)Td(B). (3.13)

Here ch(Fi) = (rk+c1+ch2)(Fi) denotes the Chern character of Fi and Td(B) = 1− 1
2K+H2

is the Todd class of the base B. For exceptional collections, this formula gives an upper

triangular matrix with all 1’s on the diagonal. Hence we loose no information by anti-

symmetrizing:

χ−(Fi, Fj) = χ(Fi, Fj) − χ(Fj , Fi) = rk(Fi)deg(Fj) − rk(Fj)deg(Fi) . (3.14)

where deg(Fi) is the degree of the sheaf, defined as the intersection between the first Chern

class of Fi with the canonical bundle of the del Pezzo surface

deg(Fi) = −c1(Fi) · K . (3.15)

Formula (3.14) counts, with orientation, the number of intersections within X between the

2-cycle components of one sheaf with the 4-cycle component of the other. Geometrically,
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one expects the massless open string states to appear whenever two branes intersect at a

point. In terms of the quiver gauge theory, the matrix χ− indeed represents the adjacency

matrix that counts the number of lines between the nodes. Moreover we see that it can be

computed very simply from the charge vectors of the fractional branes.

We have outlined the procedure for obtaining the quiver data for a given exceptional

collection of fractional branes Fi. The ensuing rules for drawing the quiver diagram are

(a) through (e) given in the previous section. Rules (a) and (b) are clear, and rules (d)

and (e) represent the special conditions that define an exceptional collection. Rule (c) is

a consequence of the geometric fact that each fractional brane consists of 0, 2, or 4-cycles

only, and therefore has, on the 6-manifold X , zero intersection with a 0-cycle, i.e. with some

isolated point p. In other words, the intersection pairing between Fi and the sky-scraper

sheaf Op that represents a D3-brane located at p vanishes. Using (3.8), this implies
∑

j

nj χ−(Fi, Fj) = 0 (3.16)

for all i. This is rule (c). It in particular ensures that, for the case of multiple D3-brane

probes, each node is free on non-Abelian gauge anomalies.

We can now obtain the full quiver gauge theory for the collection (3.10). Using (3.14),

we obtain the intersection numbers

χ(F11, Fi) = 1 , i = 1, . , 9

χ(Fi, F10) = 1 , (3.17)

χ(F10, F11) = 3.

The resulting quiver diagram is given in figure 5. We recognize the characteristic form of

a quiver gauge theory that follows from a three-block exceptional collection.

3.3 D3-brane on C3/∆27 orbifold

As it turns out, the above quiver diagram is identical to that of the D3-brane theory on

the C3/∆27 orbifold singularity. Let X,Y,Z denote the three complex coordinates on C3.

The discrete group ∆27 is the non-abelian subgroup of SU(3) generated by the three Z3

transformations

g1 : (X,Y,Z) −→ (ω X , ω2 Y ,Z )

g2 : (X,Y,Z) −→ (X,ω Y , ω2 Z ) (3.18)

g3 : (X,Y,Z) −→ ( Z , X , Y )

with ω = e
2πi
3 . The D3-brane theory near this singularity, derived via rules outlined below,

has the same quiver data as in figure 5. It is therefore a natural conjecture that del Pezzo

8 singularities can be viewed as a deformation of this orbifold. This correspondence may

be of some use, since, unlike string theory on a general del Pezzo surface, the worldsheet

CFT of strings on flat space orbifolds is soluble and the D-brane boundary conditions are

exactly known [7, 43]. For completeness, we briefly summarize how the above quiver data

arise from the orbifold construction [9, 14].
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Figure 5: Quiver diagram of the D3-brane gauge theory on a del Pezzo 8 singularity, corresponding

to the exceptional collection of fractional branes given in eq. (3.10). This is the same quiver diagram

as that of the D3-brane theory near a C3/∆27 orbifold singularity. The connection between the

two theories is explained below.

Let Γ be a general discrete group that acts on C3. Consider the D3-brane and all

of its images under Γ. Their world-volume theory is a U(|Γ|) gauge theory with a vector

multiplet V and three chiral multiplets Φi, that parametrize the transverse positions of the

D3-branes along C3. The orbifold projection amounts to the requirement that

RregV R−1
reg = V

(R3)ijRregΦ
jR−1

reg = Φi (3.19)

where Rreg is the regular representation of Γ acting on the Chan-Paton index, and R3 is

the 3-d defining representation. Since Rreg decomposes into irreducible representations as

Rreg =
r

⊕

a=1

naR
a na = dimRa. (3.20)

the projection (3.19) breaks the gauge symmetry to
∏r

a=1 U(na). Translated into geometric

language, we conclude that a D3-brane near an orbifold singularity splits up into fractional

branes Fa, where a labels an irreducible representation Ra, and that each fractional brane

occurs with multiplicity na = dimRa. The number of chiral fields n3
ab transforming in the

(na, nb) bi-fundamental representation, is obtained by the decomposition

R3 ⊗ Ra =
r

⊕

b=1

n3
abR

b. (3.21)

The group ∆27 has 27 elements, that split up in 11 conjugacy classes. It also has 11 rep-

resentations: nine 1-dimensional representations, and two 3-dimensional ones. The above

orbifold procedure thus produces a quiver gauge theory with gauge group U(3)2 × U(1)9.

Using the formula (3.21), a straightforward calculation [14] shows that the bifundamental
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matter organizes as in the quiver of figure 5. We are thus motivated to look for a relation-

ship between the geometry of the orbifold space C3/∆27 and del Pezzo 8 surfaces. Consider

the following combinations of coordinates

x = XY Z

y = (X3+ ωY 3+ ω2Z3)(X3+ ω2Y 3+ ωZ3)

z = X3+ Y 3+ Z3 (3.22)

w = (X3+ ωY 3+ ω2Z3)3

with ω = e
2πi
3 . From eqn (3.18), it is evident that these expressions are all invariant under

the action of ∆27. Each thus defines a single-valued coordinate on the orbifold space. If we

give (X,Y,Z) weight 1
3 , then the new invariant combinations in (3.22) are homogeneous of

weight (1,1,2,3). These are the same weights as of the projective space used in representing

B8. With not too much extra work, one can indeed prove that the coordinates (x, y, z, w)

defined in (3.22) satisfy a homogeneous equation of the form

w2 + y3 − 27wx3 + wz3 − 3wyz = 0 (3.23)

This confirms the identification of C3/∆27 as a special point in the moduli space of del

Pezzo 8 singularities, and (at least partially) explains the correspondence of the D3-brane

gauge theories. The orbifold perspective can be useful in case one wants to verify properties

of the string theory using an exact string worldsheet calculation. The general geometric

description of D3-branes is limited to the large volume regime. On the other hand, as we

will see shortly, it has the advantage of being a step closer to providing a purely geometrical

description of the space of gauge invariant coupling constants. Ideally, of course, one would

like to have both descriptions available.

3.4 Seiberg dual

For a given geometrical singularity, there are in principle many different exceptional col-

lections of fractional branes. The allowed choices are typically inequivalent, and in par-

ticular lead to different world-volume gauge theories on the probe D3-brane. There exists

a simple transitive set of transformations on the space of exceptional collections, known

as mutations. A useful subclass of mutations has the physical interpretation of Seiberg

duality [44, 33]: the N = 1 supersymmetric gauge theories corresponding to the original

and mutated set of fractional branes are each others Seiberg dual. For a given singularity,

the question of which of the dual descriptions is most appropriate is determined by the

value of the geometric moduli that determine the gauge theory couplings.

To apply this duality map to a given exceptional collection, one chooses a particular

node Fi. One then orders all Fj such that all branes connected to Fi via incoming lines are

placed to the left of Fi and all others are placed to the right. Seiberg duality, applied to

the node Fi then amounts to the following map on the charge vectors situated to the left

of Fi

ch(Fj) −→ ch(Fj) − χ(Fj , Fi) ch(Fi) (3.24)
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As a result of this change of basis, the multiplicity of the node Fi needs to be adjusted,

so as to preserve the requirement that all charge vectors must add up to that of a single

D3-brane. The proper adjustment is

nj → nj − Nj (3.25)

where the integer Nj is given by the sum

Nj =
∑

i<j

χ(Fi, Fj)nj. (3.26)

We recognize Nj as the number of flavors at the node Fj . Eqn (3.25) thus corresponds to

the replacement of Nc with Nf −Nc. This supports the interpretation of the map (3.24) as

a Seiberg duality. It is also straightforward to verify that the change due to (3.24) in the

number of bi-fundamentals between the nodes is completely consistent with this physical

interpretation.

Geometrically, the transformation (3.24) on the basis of charge vectors can be rec-

ognized as the Picard-Lefschetz monodromy around a conifold point. There is a natural

interpretation of this. The quiver theory we have discussed lives at a locus in Kähler

moduli space where the del Pezzo surface has shrunk to zero size, but where string per-

turbation theory is still applicable. There are other places in Kähler moduli space where

some cycle has shrunk to zero size and string perturbation theory breaks down — these

are generalized conifold points. We can imagine traversing a loop in moduli space starting

at the point where the conformal quiver theory lives, and going around a conifold point,

where the central charge of a given fractional brane Fi vanishes. This will implement the

transformation (3.24) on the charge vectors. From the point of view of the worldvolume

theory, the change in Kähler parameters translates into a change in the gauge coupling of

the U(|ni|) gauge group. As we go around the loop, this gauge coupling is pushed through

strong coupling, and we have to do a Seiberg duality on the ith node.6

Let us specialize to the D3-brane theory on del Pezzo 8. Besides the ∆27 orbifold

quiver theory of figure 5, we now know that it gives rise to a more general family of N =1

gauge theories obtained via Seiberg dualities. In particular, we can apply Seiberg duality

map to the fractional brane F10 in eqn (3.10). Via (3.30), this map amounts to replacing

the neighboring node F11 by a new fractional brane F̃11 with charge vector

ch(F̃11) = −ch(F11) + 3 ch(F10) =
(

3,
8
∑

i=5
Ei,−2

)

(3.27)

As a consequence of this mutation, the multiplicity of F10 changes from n10 = 3 to ñ10 =

−6. This is as expected from the Seiberg duality map on the field theory: the original node

has 9 flavors and 3 colors, and the new node therefore has Nf − Nc = 6 colors. The dual

quiver diagram is given in figure 6. In the next section we will use this Seiberg dual quiver

theory as our starting point for a open string construction of an MSSM-like gauge theory.

6One should take care to pick a path in moduli space such that the low energy gauge theory is still

applicable and we do not have to worry about stringy corrections. It is not completely clear that this is

always possible, but since the effect of monodromy can be d escribed purely in field theoretic terms, this

seems quite reasonable.
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Figure 6: Seiberg dual of the D3-brane gauge theory on the ∆27 orbifold, or equivalently, of the

exceptional collection of fractional branes (3.10)–(3.27) on the del Pezzo 8 singularity.

3.5 Superpotential

Thus far, we have focused on the topological properties of the D-brane theory. Non-

topological data are harder to control and compute. There is however one more valuable

piece of information that can be extracted with precision from the geometric perspective,

namely the holomorphic superpotential W . For quiver gauge theories, W is a sum of gauge

invariant traces over ordered products of bi-fundamental chiral fields. In principle there is

one such term for each oriented closed loop on the quiver. In the example of figure 5 or 6,

it is known that W is a purely cubic function:

W = CabcTr(φaφbφc) (3.28)

We can compute the cubic couplings by computing disk three-point amplitudes in topolog-

ical string theory. In the large volume limit, the internal part of the vertex operator for a

chiral field is a generator of the Ext group between two fractional branes. The three-point

functions are then proportional to the Yoneda composition of the Ext generators:

Extl(i∗Fi, i∗Fj)×Extm(i∗Fj , i∗Fk)×Ext3−l−m(i∗Fk, i∗Fi) → Ext3(i∗Fi, i∗Fi) ≡ C. (3.29)

This calculation was done explicitly for del Pezzo singularities Bn with n ≤ 6 in [35]. The

superpotential resulting from this calculation is a meromorphic function of the space of

complex structure deformations of the del Pezzo singularity.

Now let us specialize to the D-brane on B8. Let us first consider fig 5. Its superpotential

W is a cubic expression with 3×9 = 27 terms, equal to the number of triangles of the quiver.

Naively this gives 27 independent Yukawa couplings. However, since we have no direct

knowledge of Kähler potential terms, we are free to perform arbitrary field redefinitions,

as long as they are compatible with the structure of the quiver. The group of allowed

field redefinitions is GL(1)9 ×GL(3). This reduces the number of independent parameters

in W to 27 − (9 + 9) + 1 = 10. (We subtracted the overall scale of W .) The Seiberg
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dual theory of figure 6 yields to the same number parameters: there are 3 × 18 = 54

terms, but the group of allowed field redefinitions is GL(2)9 × GL(3). This again gives

54 − (9 × 4 + 9) + 1 = 10 parameters. Eight these 10 parameters can be identified with

complex structure deformations of the del Pezzo 8 surface.

3.6 Other geometric moduli

Besides the superpotential, the D3-brane gauge theory has many other gauge invariant

couplings, which arise as closed string modes of the del Pezzo singularity. These couplings

are of vital importance for making a realistic model. We will make a few comments about

the correspondence below, but the full dictionary has not yet been established.

The complex structure parameters of a general Calabi-Yau surface are associated to

(2, 1) forms and fit into N =2 vector multiplets. For the del Pezzo singularities, the complex

structure moduli that preserve the singularity correspond to (2, 1) forms with non-compact

support.7 Their auxiliary fields correspond to turning on various 3-form RR and NS fluxes

proportional to the same (2, 1) forms and their complex conjugates. In the 4-dimensional

Lagrangian, vector multiplet moduli appear as spurion fields in the superpotential, and

turning on auxiliary fields gives rise to certain soft supersymmetry breaking terms, namely

non-supersymmetric Yukawa couplings [45].

To every 2-cycle in the Calabi-Yau manifold we can associate a hypermultiplet. For

the n-the del Pezzo singularity, there are n + 1 2-cycles. If we denote the two-cycle by

CI , then the scalars in the hypermultiplet are given by the period integrals of two-form

potentials. When we put in branes, we break half of the supersymmetries and we get

two N = 1 multiplets for each 2-cycle. The closed string scalars re-arrange themselves as

follows. Consider a D5 brane wrapped on the 2-cycle. Its 4-d gauge coupling is given by

τI =

∫

CI

(

CRR
(2) − τBNS

)

. (3.30)

The other hypermultiplet scalars
∫

CI

(J + iC(4)) (3.31)

become linear multiplets in four dimensions. They contain the Fayet-Iliopoulos terms, and

control the size of the 2-cycles. Thus hypermultiplet moduli appear as spurion fields in the

D-terms. The auxiliary fields of the hypermultiplets should correspond to some interesting

deformations of the background that to our knowledge have not been studied in any detail

yet. Turning them on gives rise to several interesting soft SUSY-breaking terms, such as

gaugino masses and other non-supersymmetric mass terms.

7There are other complex structure deformations of the Calabi-Yau, which are localized around the tip of

the cone, that make the geometry less singular. They play a role when one considers worldvolume theories

of fractional branes which confine; these complex structure parameters are then identified which gaugino

condensates.
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Figure 7: The ouline of our construction of a geometric dual of the MQSSM.

4. Building the standard model on a D3-brane

We will now look for suitable symmetry breaking process, such that the left-over low energy

theory, ideally, looks like the supersymmetric Standard Model, or as a slightly more modest

target, like its minimal quiver extension: the MQSSM quiver gauge theory introduced in

section 2. The concrete plan is as follows (see figure 7): starting from the D3-brane theory

on B8, we choose a suitable configuration of expectation values of bi-fundamental scalar

fields. We then translate the symmetry breaking process in the geometric language of bound

state formation of fractional branes. In this way we manufacture a new basis of fractional

branes, characterized by their collection of charge vectors, such that the corresponding

D3-brane gauge theory reproduces the MQSSM theory. The new basis of fractional branes

will live on a partially resolved del Pezzo 8 singularity.

The minimal quiver theory of a D3 on B8, as given in figure 5, was the starting point

for a string construction of the MSSM proposed in [21]. It was argued in [21] that, by

turning on FI-terms, one can induce the condensation of bi-fundamentals that connect 3 of

the U(1)-factors with one of the U(3) nodes, thereby breaking U(3) to U(2). Inspection of

the full set of D-term equations, however, shows that one can not break one of the U(3)’s

without also breaking the other. This is not what we want, since we need an unbroken

SU(3) color group. For this reason, we will start from the Seiberg dual theory with gauge

group U(6) × U(3) × U(1)9. Its quiver diagram is drawn in figure 6.

We will now show that the quiver gauge theory of figure 6 can indeed be reduced to

the MQSSM quiver theory of figure 2. Our main assumption will be that we have complete

freedom to tune all gauge invariant coupling constants: the FI-terms, the Yukawa couplings,

as well as the gauge couplings.

– 17 –



J
H
E
P
0
1
(
2
0
0
7
)
1
0
6

4.1 Symmetry breaking to U(3) × U(2) × U(1)7

We denote the three types of bifundamental fields, as

Xp ∈ (1, 6̄) , Zq ∈ (6, 3̄) , Up,r ∈ (3, 1̄) (4.1)

The label p runs from 1 to 9, and q runs from 1 to 3, while r runs from 1 to 2. The general

(leading order) form of the superpotential is

W =
∑

p,q,r

Cpqr XpZqUp,r (4.2)

and the abelian D-term equations are
∑

r

|Up,r|2 − |Xp|2 = ζp p = 1, .., 9

∑

p

|Xp|2 −
∑

q

|Zq|2 = ζ10 (4.3)

∑

q

|Zq|2 −
∑

p,r

|Up,r|2 = ζ11

Now by assumption, we allow general deformations of the closed string background, and we

are thus free to arbitrarily tune the couplings in the superpotential, as well as the FI-terms.

For the moment we will assume that the superpotential vanishes, so that we can ignore the

F-flatness conditions. The expectation values of the scalar fields are then determined via

the above equations (4.3) in combination with the non-abelian D-term equations (here T a

and tb indicate the SU(6) and SU(3) generators)
∑

p

X̄p T aXp =
∑

q

Z̄q T aZq

∑

q

Z̄q tb Zq =
∑

p,r

Ūp,r tbUp,r (4.4)

After turning on the FI-parameters, the abelian D-term equations dictate that at least

some of the bi-fundamental fields condense. The non-abelian D-flatness equations (4.4)

make clear that the condensation must simultaneously occur in all three groups of bi-

fundamentals. We choose the following special form of the expectation values (here we

only write the fields with non-zero VEVs):

X1 =

0

B

B

B

B

B

B

B

@

φ1

0

0

0

0

0

1

C

C

C

C

C

C

C

A

, X2 =

0

B

B

B

B

B

B

B

@

0

φ2

0

0

0

0

1

C

C

C

C

C

C

C

A

, X3 =

0

B

B

B

B

B

B

B

@

0

0

φ3

0

0

0

1

C

C

C

C

C

C

C

A

,

U1,r = (χr, 0, 0 ) (4.5)

Z1 =

0

B

B

B

B

B

B

B

@

ψ1 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1

C

C

C

C

C

C

C

A

Z2 =

0

B

B

B

B

B

B

B

@

0 0 0

ψ2 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1

C

C

C

C

C

C

C

A

Z3 =

0

B

B

B

B

B

B

B

@

0 0 0

0 0 0

ψ3 0 0

0 0 0

0 0 0

0 0 0

1

C

C

C

C

C

C

C

A
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This choice breaks the gauge symmetry to

U(3) × U(2) × U(1)7 (4.6)

One can always adjust the FI-parameters ζi such that this choice of expectation values

solves the abelian D-term equations. It is not difficult to show that the non-abelian D-

term equations (4.4) are also satisfied, for suitable choice of φn, ψn and χr (see appendix).

After turning on the superpotential, the F-flatness equations will impose additional

restrictions. For a general choice of W , these may not be solved by the above configura-

tion of vacuum expectation values. In this case, the theory may need to choose another

symmetry breaking pattern or supersymmetry may be broken. We will assume, however,

that we have sufficient control over all parameters to ensure that the above expectation

values are compatible with F-flatness. Specifically, we assume that all Yukawa couplings

that connect two fields with a non-zero VEV can be tuned to zero. This amounts to the

conditions (for notation see eqn (4.2))

C1,q,r = Cq,q,r = 0 q = 1, 2, 3; r = 1, 2. (4.7)

The remaining non-zero Yukawa couplings then typically result in mass-terms for the mat-

ter fields, proportional to their coupling to the vacuum condensates. We would like to

determine the typical matter content that survives in the low-energy theory. We could

of course proceed to study this question from the gauge theory point of view. Instead,

however, let us first return to the geometric description in terms of fractional branes, since

this provides a useful dual perspective.

4.2 Geometric derivation of the low energy theory

The unbroken gauge theory corresponds to the exceptional collection of fractional branes

with charge vectors as given in (3.10), with F11 replaced by F̃11 in (3.27). In order to

trigger the symmetry breaking we switched on certain FI-terms; by turning on large VEVs

and integrating out very massive modes, we reduce to a simpler quiver theory. From

the geometric perspective, turning on FI-terms corresponds to turning on certain blow-

up modes which partially resolve the singularity. The Higgsed down quiver theory is the

worldvolume theory for a D3-brane probing this simpler, partially resolved singularity.

A basis of fractional branes for the simpler singularity may be obtained from the

fractional branes of the original singularity. The intuitive picture is that turning on VEVs

in the quiver theory corresponds to bound state formation of fractional branes. Of course,

we have been using this idea all along, because our quiver theory is just a way of describing

our probe D3 brane as a bound state of fractional branes.

To describe this condensation process in terms of sheaves on collapsing cycles8 can be

somewhat complicated. However it can be very simply described at the level of charge

vectors. When two fractional branes F1 and F2 bind into FB , the corresponding nodes in

8Or complexes of such sheaves.
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the quiver diagram collapse to one. The charge vector of the bound state associated to the

new node is the sum of the two constituents

ch(FB) = ch(F1) + ch(F2) , (4.8)

So it is relatively straightforward to obtain the charge vectors associated to each node

in the new quiver diagram, and hence this is a simple method to determine the net field

content after condensation.

The pattern of bound state formation in our model follows by inspection of the set

of expectation values (4.5). The rule we will follow is that all fractional branes (= gauge

group factors) that are connected by matter fields with a non-zero expectation value are

part of the same bound state. Applying this rule, we arrive at the following charge vector

of the bound state:

ch(F0) = 3 ch(F10) −
∑

i=1,2,3
ch(Fi) − ch(F̃11)

which gives

ch(F0) =
(

3,−2K+
8
∑

i=5
Ei− E4,

1
2

)

(4.9)

As a result, the new basis of fractional branes is (F0, F4, . . . , F9, F10, F̃11). The respective

multiplicities are (1, 1, . . . , 1,−3, 2), in accordance with (4.6).

The number of oriented lines that connect to the new node are obtained by adding or

subtracting, depending on the relative orientation, all the lines that connect to the original

two nodes. These reduction rules for eliminating nodes and lines from the quiver diagram

properly reflect the lifting of gauge fields and bi-fundamental matter from the low energy

theory. To determine the matter content, we compute the intersection pairings according

to the formula (3.14). The respective ranks of the fractional branes are (3, 1, . . . , 1, 3, 3)

and the respective degrees are (5, 2, . . . , 2, 5, 4). We thus obtain the following intersection

matrix

χ−(Fi, Fj) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1 1 0 −3

−1 0 0 0 0 0 0 −1 −2

−1 0 0 0 0 0 0 −1 −2

−1 0 0 0 0 0 0 −1 −2

−1 0 0 0 0 0 0 −1 −2

−1 0 0 0 0 0 0 −1 −2

−1 0 0 0 0 0 0 −1 −2

0 1 1 1 1 1 1 0 −3

3 2 2 2 2 2 2 3 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(4.10)

The resulting quiver diagram is depicted in fig 8. We organized the bifundamental matter

content into three generations of quarks and leptons. The quiver looks very similar to the

minimal quiver extension of the MSSM as drawn in figure 2. The only difference is that

two of the U(1) nodes are replaced by U(1)3. We will discuss possible ways of eliminating

these extra U(1)’s in the subsection 4.4.

– 20 –



J
H
E
P
0
1
(
2
0
0
7
)
1
0
6

In eqn (4.10), χ−(Fi, Fj) denotes the anti-symmetric part of the the Euler character:

it counts the number of bifundamentals from Fi to Fj minus those from Fj to Fi. However,

the new basis of fractional branes is no longer an exceptional collection, and it would

therefore be possible that lines of both orientations appear between two nodes. To obtain

more information, let us compute the full formula (3.13) for the Euler character. 9 We

obtain

χ(Fi, Fj) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0−2

−1 1 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 0

−1 0 0 1 0 0 0 0 0

−1 0 0 0 1 0 0 0 0

−1 0 0 0 0 1 0 0 0

−1 0 0 0 0 0 1 0 0

0 1 1 1 1 1 1 1 0

1 2 2 2 2 2 2 3 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(4.11)

Let us make some comments on this result. First, the fact that all diagonal elements are

equal to 1 is good news: the 1 represents the gauge multiplet of the corresponding node,

and thus indicates the absence of any adjoint matter. We further see that, although this

set of fractional branes cannot correspond to an exceptional collection, the abundance of

0’s in off-diagonal entries shows that it comes very close. This is desirable, since it gives

a strong indication that there are no extra fields beyond the ones exhibited in the quiver

diagram of figure 8.

4.3 A field theory check

As an independent check on the geometric calculation, we can try to obtain the spectrum

and interactions after symmetry breaking from the field theory perspective. Based on the

form (4.5) of the condensates, as well as the structure of the quiver in figure 8, we propose

that the MSSM fields are obtained from the original quiver fields as follows

Xi =

0

B

B

B

B

B

B

B

@

∗

∗

∗

∗

∗

∗

1

C

C

C

C

C

C

C

A

, Xi+3 =

0

B

B

B

B

B

B

B

@

ν̄i

∗
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ūi

ūi

ūi

1

C

C

C

C

C

C

C

A

, Xi+6 =

0

B

B

B

B

B

B

B

@

ē

∗

∗

d̄i

d̄i

d̄i

1

C

C

C

C

C

C

C

A

,

U i,r = ( ∗ , ∗ , ∗ ) U i+3,r = ( ∗ , Hi,r
u , Hi,r

u ) U i+6,r = ( ∗ , H
i,r

d , H
i,r

d )

Z1 =

0

B

B

B

B

B

B

B

@

∗ L1 L1

∗ ∗ ∗

∗ ∗ ∗

∗ Q1 Q1

∗ Q1 Q1

∗ Q1 Q1

1

C

C

C

C

C

C

C

A

Z2 =

0

B

B

B

B

B

B

B

@

∗ ∗ ∗

∗ L2 L2
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∗ Q2 Q2

∗ Q2 Q2

∗ Q2 Q2

1

C

C

C

C

C

C

C

A

Z3 =

0

B

B

B

B

B

B

B

@

∗ ∗ ∗

∗ ∗ ∗

∗ L3 L3

∗ Q3 Q3

∗ Q3 Q3

∗ Q3 Q3

1

C

C

C
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9Evaluation of the integral (3.13) gives:

χ(Fi, Fj) = rk(Fi)rk(Fj)+rk(Fi)ch2(Fj) + ch2(Fi)rk(Fj)− c1(Fi) · c1(FJ ) +
1

2
χ−(Fi, Fj)
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Figure 8: The quiver diagram of the collection of fractional branes given in eqns (3.10) and (4.9).

It has the same matter content and gauge symmetry as the MQSSM given in figure 2, except that

each of the three generations couples to a different U(1) factor.

with i = 1, 2, 3. All entries not indicated with a ∗ have, due to the constraints (4.7) on the

superpotential, no direct Yukawa coupling to the fields with non-zero expectation value.

These components are thus expected to remain massless after the symmetry breaking.

Conversely, all fields marked by the ∗’s are expected to acquire a mass, either via Yukawa

coupling to a field with non-zero VEV or by being eaten via the Higgs mechanism.10

While it would be useful to analyze the symmetry breaking process is more detail, we

like to emphasize that we prefer to view the original high energy quiver theory as only an

intermediate step towards a direct string construction of the unbroken MSSM-like theory.

4.4 Decoupling of U(1) symmetries

The quiver diagram of figure 8 displays a total of nine U(1) factors. Most of these, however,

are automatically or easily decoupled from the low energy theory. First, since all fields are

neutral under the overall U(1) symmetry Qtot =
∑

i Yi, this overall factor decouples. Sec-

ondly, it can easily be shown that there are two U(1) factors that have mixed anomalies

with the non-abelian gauge symmetries. In the full string theory realization of the quiver

gauge theory, these anomalies are cancelled via a generalized Green-Schwarz mechanism,

which in addition renders the corresponding U(1) vector bosons massive. In the decou-

10A straightforward accounting exercise shows that, in fact, the leading order cubic superpotential (4.2)

is not sufficient to lift all fields with a ∗. To make all fields massive, one need to include higher order terms

in W . These ”irrelevant” terms can become relevant after turning on the expectation values (4.5)–(4.5).
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pled low energy theory, these U(1)’s thus survive as anomalous global symmetries. For

completeness, let us briefly outline the relevant stringy cancellation mechanism [46].

The world-volume action of fractional Dp-branes includes a CS-coupling to the RR-

potentials of the form

∫

C(p−1)∧ TrF , and

∫

C(p−3)∧ Tr(F ∧ F ) . (4.12)

Upon integrating out the C-fields, these interaction terms give rise to additional anoma-

lous contributions to the D3-brane gauge theory action that cancel the quantum mechanical

anomalies, due to the presence of chiral fermions. The compensating contributions arise

from the coupling, via the C-field propagator, between the first and second type of in-

teraction terms in eqn (4.12). The coupling between two interaction terms of the first

type in (4.12) gives rise to the Stueckelberg type mass-terms for the vector bosons. In the

decoupled theory, only the gauge bosons of the anomalous U(1) factors acquire a mass.

An intuitive explanation11 for this is that the anomalous U(1) factors are in one-to-one

correspondence with fractional branes that wrap cycles that, via the intersection pairing,

are dual to compact cycles within the non-compact Calabi-Yau geometry. There are two

such cycles: the 4-cycle that wraps the del Pezzo 8 surface, and its dual degree one 2-cycle.

By contrast, all degree zero 2-cycles within the del Pezzo surface are dual to non-compact

4-cycles. It is therefore natural that the associated closed string modes, which are the

would-be longitudinal components of the non-anomalous U(1)’s, have non-normalizable ki-

netic terms. The vector bosons of the anomaly free U(1)’s thus survive as massless low

energy degrees of freedom in the non-compact theory.

This leaves us, of the original nine, with a total of six U(1) gauge symmetries. Their

generators can be recognized as the hypercharge Y and B−L, as identified for the MQSSM

in section 2, and four additional charges, given by the difference of two generators within

each U(1)3 node in figure 8. There are several ways in which the extra U(1)’s can be

decoupled from the low energy physics. For instance, it is natural to assume that the

superpartners of the right-handed neutrinos acquire a non-zero expectation value. This

VEV breaks three of the U(1) symmetries. Turning on generic Higgs expectation values will

then break all the remaining U(1)’s, except for the electro-magnetic gauge group generated

by Q
EM

= Y + T3. In other words: simply by assuming non-trivial sneutrino and Higgs

VEVs, our model automatically leads to the correct electro-magnetic charge assignments

of quark and leptons.

For the purpose of reproducing the MQSSM of figure 2 from our quiver in figure 8, one

could in principle attempt a direct approach and decouple the extra U(1) vector bosons

from all observable matter, simply by tuning the corresponding U(1) coupling constants

and make them sufficiently small. The extra U(1)’s then become global symmetries, that

forbid certain undesirable generation mixing couplings. We plan to study the fate of the

U(1) symmetries after embedding of our construction inside a compact Calabi-Yau manifold

in an upcoming paper.

11It would be worthwhile to work out the following argument in more detail.
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Figure 9: The symmetry breaking towards the MQSSM of figure 8 is geometrically dual to blowing

up the 2-cycles α1 and α2, corresponding to the first two roots of E8, of the del Pezzo 8 surface. In

order to perform the blow-up, the complex structure is tuned so that the del Pezzo develops an A2

singularity.

4.5 Geometric dual of the MQSSM

With some hindsight, we can now give a more intrinsic geometric characterization of the

reduced geometry and collection of fractional branes described by the MQSSM, from which

any reference to the symmetry breaking process and bound state formation has been erased.

Notice that the new bound state basis of fractional branes, as given in eqns (3.10), (3.27)

and (4.9), does not contain the 2-cycles α1 and α2 (see eqn (3.4)). This indicates that

these 2-cycles have been removed from the singularity by blowing them up.

Being cycles with self-intersection −2, the αi in general do not appear as effective

curves: they can be blown up only at special points in the complex structure moduli space,

at which the del Pezzo 8 surface develops a suitable A-D-E type singularity. In our case,

we first need to tune the complex structure to obtain an A2 singularity. This tuning is

presumably the geometric equivalent of the requirement (4.7) on the superpotential W . At

this special locus in complex structure moduli space, the Calabi-Yau singularity becomes

degenerate and the quiver moduli space develops new branches. Then, the pair of 2-cycles

α1 and α2 may be be blown up and removed from the singularity. The remaining CY

singularity is our proposed geometric dual to the MQSSM.12

5. Discussion

We have identified a Calabi-Yau singularity on which the D3-brane world-volume theory

reproduces the MQSSM theory of figure 2. In terms of the quarks, leptons, and gauge

bosons, it has the exact same matter content as the MSSM. There are however a number of

additional Higgs fields, as well as a possibly a number of (arbitrarily weakly coupled) extra

U(1) gauge factors. In general, the appearence of extra Higgses and U(1)’s is characteristic

of many string theoretic models, as well as to many other proposals for extending the

12Since the Standard Model is not a strongly coupled large N gauge theory, the dual classical geometric

description has somewhat limited validity, since string corrections are bound to be important. As a purely

theoretical exercise, one could imagine taking a large N limit of the MQSSM, by considering a large number

of D3-branes on the partially resolved del Pezzo 8 singularity. After accounting for the backreaction and

taking a decoupling limit, this leads to an AdS/CFT type dual geometry, which for large ’t Hooft coupling

is arbitrarily weakly curved. We expect this dual geometry to be directly related to our del Pezzo 8 surface

with an A2 singularity, presumably via a geometric transition analogous to [47].
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Standard Model. In all cases, it is important to have the freedom to tune masses and

couplings, to ensure compatibility with current observational bounds. Whether the present

model can deal with these challenges needs further study, but the ability to (fine-)tune

couplings is one of the main strengths of our set-up.

A crucial part of supersymmetric model building is the understanding of how super-

symmetry gets broken. In general, supersymmetry breaking is parameterized by means

of soft terms, and each mechanism generates its own characteristic pattern. In our set-

up, a certain class of soft SUSY breaking terms can be geometrically understood as the

effect of turning on IASD three form flux [48, 45]. As mentioned earlier in section 3.6,

these fluxes appear as auxiliary fields of complex structure moduli in the superpotential

and thus turning them on gives rise to non-supersymmetric Yukawa couplings. Non-SUSY

mass terms can be generated by auxilary fields of closed string hypermultiplets. Unfortu-

nately, their geometric meaning is not well understood at present, and since they appear in

D-terms, their couplings to world-volume fields are much harder to compute. Nonetheless,

it is evidently worthwhile to develop a better control and understanding of supersymmetry

breaking in our set-up. In this respect, an interesting recent development is the realization

that adding an extra vanishing del Pezzo with fractional branes to our set-up introduces a

hidden sector in which supersymmetry may be dynamically broken [49].

Finally, let us address some possible criticisms of our bottom-up approach to string

phenomenology. Right from the start, one could ask why it would even be useful to try to

construct the Standard Model via a decoupling limit on one or more D3-branes. Since the

decoupled theory has continuous parameters, the approach does not seem to be restrictive

enough to lead to a phenomenologically predictive framework – at least not much beyond

that of ordinary quantum field theory. Our point of view, however, is that the open string

approach is a very reasonable first step towards the larger goal of string phenomenology.

Eventually, QFT breaks down at the Planck scale, and string theory is our best chance

of finding a fully consistent UV completion. To find out which closed string theory is the

right one, it is useful to know how our present knowledge of the Standard Model translates

into the geometric language of string theory. This is what we have tried to investigate.

An inevitable hurdle in this quest is that the geometric language has somewhat limited

validity in the regime of interest. As we hope to have shown, however, useful lessons can

still be learned by trying to match the two perspectives.

Our construction of the MSSM-quiver gauge theory of figure 8 depends on several

seemingly arbitrary choices. One obvious question is whether one can obtain similarly

quasi-realistic gauge theories by starting with one of the lower del Pezzo surfaces or with a

different class of CY singularity. The del Pezzo examples are a particularly simple class of

singularities, because they have only one single collapsing 4-cycle. For our present study,

we settled on the dP8 example because it is sufficiently rich and because of its direct

relation with the ∆27 orbifold. However, one can easily imagine arriving at an equivalent

gauge theory via an alternate route, starting from a different geometry and via a different

symmetry breaking process. On the other hand, we expect that if the final D3-brane gauge

theory is the same, the final geometric singularity must also be the same. We expect that,

in this respect, our bottom-up approach is robust.
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What does our model add to the many other D-brane constructions of Standard Model

like field theories [16, 18 – 20]? A key distinction between our model and almost all other

existing proposals, is that in our case all D-branes are localized near a very small neigh-

borhood of the compactification manifold. Our intuitive picture is that the tip of the

singularity sits a the bottom of a warped region, created via back reaction of the brane

or by 3-form flux. The warp factor is such that the energy scale increases with the radial

distance from the tip, which thus becomes identified with an RG parameter. The low

energy open string dynamics is confined to a small, typically highly curved region near the

tip and can therefore be controllably disentangled from the dynamics of the closed string

moduli, that determine the global shape of the string compactification. In this way we can

cleanly separate the question of closed string moduli stabilization from that of building a

realistic low energy field theory. We view that as an important advantage of the bottom-up

perspective.

An important possible objection to our set-up is that it seems to ignore the lesson of

the unification of coupling constants. Although, by choosing to work with a single D3-

brane, our specific construction does achieve some form of geometric unification, we see

no obvious reason why, in our model, the couplings would need to converge at some high

energy scale. Gauge unification is indeed somewhat at odds with the bottom-up philosophy,

but we prefer to see the two viewpoints as complementary rather than incompatible.13

A final comment: it is clear that our bottom-up perspective is initially much more

modest than the standard top down approach to string phenomenology. Reproducing the

Standard Model in terms of a decoupled open string theory is an important near-term

goal, but only a first step in the full program of string theory. It is in general a very non-

trivial challenge to lift a local D-brane theory near a singularity to a fully consistent string

compactification. We plan to address some aspects of this problem in the near future.
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A. Verification of D-term equations

As promised, let us verify that the expectation values (4.5)–(4.6) satisfy all necessary D-

term equations. We assume that the abelian D-term equations are satisfied by suitable

13A related point is that, by directly aiming at the SM rather than some grand unified gauge theory, we

in principle have the freedom to choose the string scale as low as a couple of TeV or so. This has not been

our main philosophy, however.
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adjustment of the FI-parameters. The SU(6) D-flatness condition requires that

∑

p
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equals

∑
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where i denotes the U(3) index of Zq. So we find that this equality is satisfied provided

we choose φn equal to ψn. Similarly, the SU(3) equations require that

∑

q,I

(Zq
I )† ⊗ Zq

I =

0

B

B

@
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(A.3)

where I denotes the U(6) index of Zq, equals

∑

p,r

(Up,r)† ⊗ Up,r =

0

B
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(A.4)

This equality fixes the value of
∑

|χr|
2. So we conclude that (4.5)–(4.6) indeed represents

a valid vacuum, provided the superpotential W is adjusted appropriately.
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